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Trajectory structures and transport
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The special problem of transport in two-dimensional divergence-free stochastic velocity fields is studied by
developing a statistical approach, the nested subensemble method. The nonlinear process of trapping deter-
mined by such fields generates trajectory structures whose statistical characteristics are determined. These
structures strongly influence the transport.

DOI: 10.1103/PhysRevE.70.056304 PACS nunerd7.27.Qb, 52.35.Ra, 05.40a, 05.10.Gg

I. INTRODUCTION method could be extended to more complicated physical sys-
tems which contain particle collisions, average velocities, or
Test particle motion in stochastic velocity fieltw tracer  a supplementary component of the motion perpendicular to
advection is a generic problem in various topics of fluid and the two-dimensional plang19] and the references thergin
plasma turbulence, astrophysics, or solid state phy4ie§. It was shown that the presence of trapping determines
This problem is strongly related to the process of advectionmemory effects irL(t) and a rich class of anomalous diffu-
diffusion of passive and active fields, which was very muchsion regimes in the presence of a decorrelation mechanism

studied in recent years, and important progress was achievé9l- These studies have shown that the decorrelation trajec-
[6-9]. tory method provides a qualitatively good description of the

In this context, particle motion in two-dimensional trap_ping_ process. However, due to the rather strong approxi-
divergence-free velocity fields represents a special case. Kr&ation introduced in this methotsee Sec. 1), there are
ichnan has shown, for the first time, in a study based o everal qualitative aspects that are not \{vell descnbgd
numerical simulationgl0], that the existing analytical meth- 120:21. They are related to trajectory fluctuations and their

: rrelation with the stochastic velocity.
ods are not adequate for this type of problem. The cause chOThe above results concern the ef)f/ect of trapping on the
this anomaly is the trapping of the particles, which appears irﬁq

D . o dividual trajectories. We show here that trapping also pro-
such _velocny f!elds_when_ they hav_e S!OW time variation. Theduces collective effects. It determines coherence in the sto-
trapping consists in trajectory winding on almost closed

. . ; : chastic motion in the sense that bundles of neighboring tra-
paths. A typical trajectory has a complicated shape with suclctgries form localized structures similar to fluid vortices.

localized trapping events separated by long jumps. Consérhe statistical characteristics of trapped and free trajectories
quently, the probability distribution function is non- are separately studied and the average, the dispersion, and
Gaussian. Thus the methods based on this hypotlisés  the probability distribution, function for the trajectories and
that of Corrsin[11,1] and the direct interaction approxima- for the distance between two neighboring trajectories are de-
tion [10,12,13) are not adequate for this specific case. termined.

This special problem of diffusion in two-dimensional =~ The method developed for this study, the nested suben-
divergence-free velocity fields describes, for instance, thesemble method, is a semianalytical statistical approach
transport in turbulent magnetized plasmas or in incompresswvhich extends and improves the decorrelation trajectory
ible fluids. It was studied especially by means of direct nu-method[18] by taking into account the fluctuations of the
merical simulationg[14] and the references thergior on  trajectories in the subensembles. This is a Lagrangian
the basis of simplified mode[45,16. There is also a quali- Method constructed with the aim of being in agreement with
tative theoretical estimation of the scale law for thethe statistical constraints imposed by the conservation of the
asymptotic diffusion coefficienf17] based on an analogy Lagrangi'an potential in.each realization. We note that our
with the percolation process in stochastic landscapes. Th@€thod is completely different from the recent Lagrangian
case of collisional particle motion in such static velocity @PProaches based on statistical conservation lase the
fields was analyzed by means of renormalization group tech€View [6]).
niques([2] and the references thergiand the asymptotic
time behavior of the mean square displacement was deter-
mined. The evolution of the diffusion process of test particles Particle advection in a two-dimensional stochastic veloc-
was determined only ifil8] where a statistical approach, the ity field is described by the nonlinear Langevin equation
decorrelation trajectory method, was developed. It yields dx(t)
analytical expressions for the time-dependent diffusion coef- “at =v[x(t),t], x(0)=0, (1)
ficient D(t) and for the correlation of the Lagrangian velocity t
L(t) that are qualitatively valid for the whole range of the wherex(t) represents the trajectory in Cartesian coordinates
Kubo number(see the next section for the definition$his  x=(x;,x,) The stochastic velocity field(x,t) is divergence-

Il. THE PROBLEM
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free:V-v(x,t)=0, and thus its two componenigsandv, can  to x dependence of the EC functi@B). The importance of

be determined from the stochastic scalar figlct,t) as the nonlinearity is characterized by the Kubo number defined
by
d $(x,1)
. 't = o.. 2
U|(X ) 8|J ﬂXj ( ) K:V_TC:E (8)
Ae T

where g;; is an antisymmetric tensdle;,=1, e5;=-1, &3
=g,,=0). The potentialp(x,t) is considered to be a station- whereV is the amplitude of the stochastic velocity,is the
ary and homogeneous Gaussian stochastic field, with zereorrelation time, and is the correlation length. These pa-
average and given two-point Eulerian correlati&@t) func-  rameters appear in the EC function of the velocity as the
tion maximum value at the origifivV=E;(0,0)] and the charac-
teristic decay time and length of this function. The Kubo
B = (dxp,t) (X1 + X,y +1) (3)  number is thus the ratio af, to the average time of flight of
where(--+) denotes the statistical average over the realizathe particles over the correlation length,=A./V. It mea-
tions of ¢(x,t). The statistical properties of the space deriva-SUr€s the particle’s capacity of exploring the space structure
tives of the potential are completely determined by those on the stochastic velocity field bgfore It phgnges. .
the potential. They are stationary and homogeneous Gaussi?lgl':or small Kubo numbers the time variation of the velocity

stochastic fields likes(x,t). The two-point Eulerian correla- 1'€ld is fast and the particles cannot “see” the space structure
tions of the derivatives of(x,t) are obtained as derivatives of the velocity field. The conditioi <1(r.<7y) defines the

of the potential EC functiort(x,t). We introduce the nota- quasilinear regimeor the weak t.urbuler)ce g:a)sﬁor Whi(.:h .
tion E, 4 (1) =(ch_(Xy,ty) b (X1+X,ty+1)) where gh(x,1) the results are well established: the diffusion coefficient is

= (d/ 9%;) p(x,t) and the subscript df contains the indices of Dq':()\ngC)KZZVzTC and the trajectories have Gaussian dis-

the derivatives of the potential iy ,t; (left factor separated tribution.

. I 2 For K> 1(7.> 74) the time variation of the stochastic po-
by a semicolon from the indices of the derivatives of thetential is slow and the trajectories approximately follow the
potential inx; +Xx, t; +t (right facton. The absence of indices J bp y

corresponds to a factap inside the average. One obtains C°’.“°“r _Ilnes of¢(x,'F). This produces_ a trqppmg effec_t: the
trajectories are confined for long periods in small regions. A

_ NG d typical trajectory shows an alternation of large displacements
Ei k(XD =(=1) E"‘E“'E(X't) (4)  and trapping events. The latter appear when the particles are
' K close to the maxima or minima of the potential and consist of
where n is the number of derivatives of the first factor trajectory winding on almost closed paths. The large dis-
¢;.(x1,11) inside the above average. In particular, the velocplacements are produced when the trajectories are at small
ity v(x,t) is such a stationary and homogeneous Gaussiaabsolute values of the potential. Trajectory trapping appears
stochastic field. The correlation of the velocity componentsor K> 1 and becomes stronger ldsncreases up to the limit
and the potential-velocity correlations are obtained usingf static fields(K, 7.=%) where the trapping is permanent. It
Egs.(2) and(4). These correlations will be used in the fol- determines the decrease of the diffusion coefficient and the
lowing calculations. change of its dependence on the Kubo number from the
The potential is a continuous function fandt in each  Bohm scaling23,24 Dg~ (\2/ 7.))K=VA, to a trapping scal-
realization and it determines a unique trajectory as the solung Dy~ ()\g/TC)Kv with y<1. In the limit of a static poten-
tion Eq.(1). Starting from the above statistical description oftig| field (K, 7.— ) the transport is subdiffusiveD(t)
the stochastic potential and from an explicit EC function._t-«_, 0 with «>0 and (x(t)) ~t}"* grows more slowly
E(x,t), one has to determine the statistical properties of the,,, linearly. It can be showsee Sec. Ythat y=1-a and

trajectories. In particular, the Lagrangian velocity correlationy, ;s the same power law describes the long time behavior of
(LVC), defined by the mean square displacement in a static potential and the
Li; (t) = (0i[x(0), 0Ju;[x(t),t]) (5) erendence oK of the .asymptotic diffusion coefficient in a
time-dependent potential.
for a stationary process, will be evaluated. The mean square We show here that, in addition to this strong influence on
displacementx’(t)) and its derivative, the running diffusion transport, trapping generates trajectory structures similar to

coefficientD;(t), are determined by this function §22] fluid vortices. It appears coherently for bundles of neighbor-
t ing trajectories leading to eddying regions. The statistical
ety =2 f drL;(D(t- ), (6)  characteristics of these trajectory structures are determined.

0

IIl. THE NESTED SUBENSEMBLE METHOD

t
Di(t) = f d7Li(7). ) The motion described by Eggl) and(2) has the velocity
0 at any moment perpendicular to the gradient of the potential
This kind of Langevin problem, named in the literature tracerin the instantaneous positior(t) and the time variation of
advection or diffusion by continuous movements, is nonlin-the Lagrangian potential is produced only by the explicit
ear due to the space dependence of the potential, which leatlse dependence of(x,t) These eqgations are of Hamil-
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tonian type with the potential as the Hamiltonian function.are estimated ifi26] on the basis of a rather strong assump-
Thus, for the static case whe#eé/dt=0 (7.,K— ), the po- tion and in[16] for a model of rotating fluid layers.

tential is an invariant of the motion. The trajectories are on More precisely, the LVQ5) for the whole set of realiza-
the contour lines of the potential and the motion is periodictions is obtained by summing up the contributions of each
For slowly varying or large amplitude potentials such thatsubensemble.  The latter can be written as
7> 1y (i.6.,K>1), ¢/ ot is small during a time of the order (v;[x(0), OJuv;[x(t) D s=vdVH(E; S) where VL(t:9

1 and there is an approximate invariance of the potentiak(v[x(t),t])s is the average Lagrangian velocity in S and
along the trajectory in each realization. Trajectory trapping iShus

essentially related to this invariance of the Lagrangian poten-

tial. Thus, a statistical method is adequate for the study of ) = 04,0 O\ /Lt

this process if it is compatible with the invariance of the Li® —deqS VPSPV (t:S). (12

potential. . . L
The main idea in our approach is to study the LangevinHerePl(S) is the probability that a realization belongs to the

equation(1) in subensembles S of realizations of the stochasSUPensemble S and is obtained as

tic field, which are determined by given values of the poten- © 1 1
tial and of the velocity in the starting point of the trajectories: 1 (2m)2 \/E(O,O)El;l(o,O)EZ;Z(O,O)
(S): ¢(0,0) = ¢°, v(0,0) =V°. (9) 0 02 02
o _ _ (¢) (v1) (v2)
The invariance of the potential appears clearly in S. The Xexp — 2E(0,0) " oE.. (0,0) "o, (0,0)
probability distribution function of the Lagrangian potential ' L ZE
#[x(V)] is (13

PS(¢,t) = (S — X)) ]Ps= & p— ¢°) (100  WhenE(x) has a maximum at=0, as happens in most cases.

o _Equation(12) is an exact equation. Thus the diffusion coef-
where(: - -)s denotes the average taken on the realizations ificient (7) is determined by evaluating"(t; S).

S. The approximations introduced in the evaluation of the Neglecting the fluctuations of the trajectories in S,

correlation of the Lagrangian velocity must be compatibleyL(t:S) is approximated in the decorrelation trajectory

with Eqg. (10). Moreover, the second condition {8) brings  method[18] with the average Eulerian velocity calculated
an important simplification in determining the LVC for sta- giong the average trajectory:

tionary processes. It actually reduces the two-time correla- . c
tion of the velocity to the(one-timg average velocity. The VH(t;S) = VAX(L,9),t; 9] (14)
stochastiqEulerian potential and velocity in a subensemble where X(t,S) is the average trajectory in SX(t,S)

S defined by conditio®) are Gaussian fields but nonstation- _ Th hi |ati . . .
ary and nonhomogeneous, with space- and time-depende&te t)((a(rtr)r:isﬁ ed ?rrc]),ni t'rs]:\;zrfgg; (re]corre ationtrajectory in S is

averages and dispersions. The averages depend on the pa-

rameters of the subensemble and are defined by dX(t,9) ¢
— . =VIX(t9)t;S] (15
DE(x,1;9) = (d(x,D)s VEX,5S = (v(x,t)s  (11) dt

where the superscrig is used to underline the Eulerian SO that an explicit expression fot-(t;S) is obtained. It was
nature of these quantities. They are equal to the corresponghown that Eq(15) is of Hamiltonian type with the Hamil-
ing imposed conditioni9) atx=0 andt=0 and decay to zero tonian function equal to the average Lagrangian potential
at large distance and/or time. The mean squares of the poteapproximated bypE[X (t, S),t; S]. Thus, in the static case the
tial and velocity fluctuations are zero at0, t=0 and in- average trajectories are periodic and evolve on closed paths.
crease up to values corresponding to the whole set of realFhe approximation14) seems to be rather rough but, be-
izations at large distance and/or time. The existence of apnause it is performed in the subensemble, there are two as-
average Eulerian velocity in the subensemble determines grects which contribute to improving its accuracy. One is due
average motion. The LV@5) and the time-dependent diffu- to the smaller amplitude of the velocity fluctuations in S, the
sion coefficient(7) can be expressed as functions of the setsource of the trajectory fluctuations: it is zero in the starting
of average trajectories in the subensembles S. point of the trajectories and reaches the value corresponding
This subensemble or conditional analysis of the Langevirio the whole set of realizations only asymptotically. The sec-
equation was introduced ii18] where the decorrelation tra- ond is related to the fact that the trajectories in the suben-
jectory method was developed based on an approximatiosemble are superdetermined. In addition to the necessary and
that essentially consists in neglecting the fluctuations of theufficient initial conditionx(0) =0, they have supplementary
trajectories in S. The approach presented here is a develojritial conditions determined by the definiti@f) of the sub-
ment of this method, which considers the fluctuations of theensembles. This reduces the differences between the trajec-
trajectories in S and determines their probability distributiontories in S and thus their fluctuations. The first description of
function (PDF). We note that similar subensemble averageghe trapping process in qualitative agreement with the nu-
of the Eulerian stochastic velocity field were studied 28] merical simulations was obtained using these approxima-
with the aim of showing that eddies and structures exist evetions. However, there are important qualitative aspects that
in isotropic turbulence. Subensemble Lagrangian averageme not obtained from this approximation. The most evident
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concerns the average trajectory in the subensemble. In titee whole statistical ensemble is determined. The calcula-

static case the trajectory in each realizatjsolution of Eq. tions are for the static stochastic potential corresponding to

(1)] is periodic but the average of such trajectories cannot béhe strongest trapping. The transport in a time-dependent po-

periodic[as obtained from Eq15)] since they have different tential is discussed in Sec. VI B.

periods (distributed around some average value which de-

pends on $ Another aspect is discussed[20,21 and con-

cerns the average Lagrangian velocity in a biased stochastic

potential. The (one-poinj probability that a realization of the sto-
Trajectory fluctuations in the subensembles S are consicthastic potential belongs to the subensemble S2 contained in

ered here in agreement with the conditidi®) by separating the subensemble S is defined by

the realizations in S into subensembles S2 corresponding to

fixed values of the second derivatives of the potentiak in (A - ¢(0)]é[v°—v(0)]l_[ 5[‘1’8 - $;(0)])

=0, t=0: P.(S2) =
PP(x.1)
IX% 9% | x=0t=0

A. Eulerian statistics in the subensemble S2

P1(S)

(S2: ¢;;(0,0) = =¢; (16 7
whereij =11, 12, 22. The Langevin equati¢h) is studied in ~ where the productl is for ij=11, 12, 22. It is calculated
these subensembles S2. The average trajectory is approxsing the Fourier representation of thdunctions and per-
mately determined by neglecting trajectory fluctuations informing the average of the resulting exponential of the sto-
S2. Pushed to the subensembles S2, this approximation @hastic Gaussian quantitiésee, e.g.[27]). One obtains after
much more accurate than taken in S because the trajectorifaightforward calculations

in S2 are much more superdetermined than those in S: three

supplementary initial conditiond 6) are added to the initial 1 _
Pe y o P1(S2 = —55[E1.140)c] 12

conditions(9). Moreover, the amplitude of the velocity fluc- (21m)372

tuations is smaller in S2 than in S. Thus the accuracy of this 02 ) 5

method is much increased compared to the accuracy of the % eXp[— (¢12) _aG a0ty + 213,Cq
decorrelation trajectory method. But the main advantage of 2E;5140) 2¢  2c c
performing this development consists in the fact that it pro- (18)

vides for each subensemble S a collection of trajectories in-
stead of one decorrelation trajectory. It is thus possible t :
obtain the statistical properties of the trajectories in S b&v herec; are constants given by
performing averages over the subensembles S2 contained in
S. We determine using this nested subensemble procedure
the PDF of the trajectories and also the PDF of the distance
pet.wee_n two nr—;ighporing _trajectorie;. Thus much more sta- Cy = Eppp{0) - Egz;(O)/E(O),
tistical information is provided by this method, which per-
mitted us to evidence the existence of coherence in the sto-
chastic trajectories. C12= Ej11.4{0) — E;1(0)E5,.(0)/E(0),

We note that this nested subensemble approach can be
further developed by introducing subensembles defined by 5
higher order derivatives of the potential, S3, S4, and so on. C=C1Co~ Cpo, (19
This systematic expansion satisfies at each order higher than )
1 all the conditions required by the invariance of the La-anda are essentially the parametep§ of the subensemble
grangian potential Eq10). It is, however, expected that the S2,
main statistical properties of the stochastic trajectories in S
are already obtained at the second order and that the higher a; = ¢(1)1‘ ¢°E11;(O)/E(O),
orders contribute with corrections to these results. The nested
subensembles S, S2 are considered in this study. 0 0

The calculations consist of the following steps. First, the 8 = ¢~ ¢ Exp(0)/E(D). (20)

statistical properties of the stochastic potential and velocity, The average Eulerian potential in the subensemble S2,

reduced in the subensemble S2 defined by conditi@8s  pE(x;S2) =(h(x))s, is determined by the conditional aver-
and(9) are derived; namely, the probability that a realizationage corresponding to E€L6):

belongs to a subensemble S2 and the subensemble average

Eulerian velocity are determined. Then an equation for the DE(x: 2)

average trajectory in S2 is obtained. The statistical properties '

of the trajectories and of the distance between two trajecto- (p(x) S ¢° - ¢(O)]5[v°—v(0)]]_[ 5[¢ﬂ - ¢;(0)])
ries in the upper subensemble S are expressed as functions of = .
the average trajectories in all subensembles S2 contained in P1(S)P1(S2)

S. Finally, the running diffusion coefficient corresponding to (21

¢, = Ey1.11(0) - E3;(0)/E(0),
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This average is calculated by introducing the Fourier reprea parametep taken at3=0 of the average of the exponential
sentation of thes functions which leads to the average of of the above linear combination with an additional term
¢(x) multiplied with an exponential of a linear combination B¢(x). One obtains after performing the inverse Fourier
of ¢(0), v(0) and ¢;;(0). It can be written as the derivative at transforms

C[E(X) 210 ¢°+ Ei(x) 10 ¢ + Ej(x) 310 ¢ |PL(S)P1(SD)

E(y- —
Ps2 P.(SPy(S2) @2
[
which can be written explicitly as become the same as in the global statistical ensemble. The
amplitude of the fluctuations at a pointis smaller in the
Ero e _ EX)| o @[Ex(0)ci,— Ey1(0)C,] subensemble S2 than in the subensemble S.
PHx;2) = E(0) ¢ c This nested subensemble procedure evidences, in the
zero-average stochastic velocity fieldsat of average ve-
+ a[E11,(0)C1o— Epp(0)cy] " Ez.(x) 20 locities (corresponding to each subensembiEhey depend
c E,.»(0) ! on the statistical characteristics of the velocity figlie cor-
E.(X) E (%) relation and the constraint imposed in the problem, i.e., the
- =L 2y 12, #%, zero-divergence conditionThe following relation holds be-
E;1,1(0) E12:140) tween the S2 average velocities and the S average velocity:
+ E11,(X)(a1C5 — @C10) + Epo(X)(a5C; — 1C1))
c c : VE(x;9) = J depd,del,de2,P1(SAVE(X;S2). (25

(23 . . . - "
Similar equations can be written for all statistical quantities

The subensemble S2 average potent®) equals#® atx  defined in the nested subensembles.
=0, t=0 and it decays to zero at large like the average
Eulerian potential in the upper subensemble S. Its expression B. Average trajectory in the subensemble S2
is more complicated and depends on the second order deriva-
tives ¢ﬂ that label S2. The potential considered only in thed-
realizations in the subensemble S2 is a nonstationary an

nonhomogeneous Gaussian field having a space-tlmefhe latter is evaluated by neglecting the fluctuations of the

dependent average. . S =
As in the whole ensemble and as in S, the statistical propt-raJeCtorIeS In the subensemble S2 as

erties of the velocity field in the subensemble S2 are deduced VL(t;S2) = VEX(t;S2):S2]. (26)

from those of the potential in S2. The velocity in the suben- ) ] ) ) o
semble S2 is a nonstationary and nonhomogeneous Gaussidfth this approximation the average Lagrangian potential in

stochastic field having a space-time-dependent average. THR2 1S <‘P_[X(t)]>525_q)E[_x(t;82_);52]' Due to Eq.(24) a
average Eulerian velocity is calculated by the same proceHamiltonian equation is obtained fo4(t; S2):

dure used for the potentigR3). The relation(2) between dX(t:S2) P

velocity and potential in each realization holds between the = :gin(I)E[x(t;SZ);SZ:l_ 27

respective average quantities calculated in the nested suben- dt j

sembles. It was obtained in the subensemble B8h and it ¢ potential calculated along the solution of E2j7) with
can be shown that the initial conditionX (0;S2 =0 is invariant and independent
of the parameters of S2:

(24) DE[X(;S2);S2] = ¢° (28)

.at any time and for all subensembles S2 included in S.
is

The average Eulerian velocit24) determines an average
splacement in the subensemble X2t;S2). It is the time
tegral of the average Lagrangian velocity in $2(t;S2).

I PE(x;S2)

I

Vi (x;S2) = ¢

Thus the average velocity in the subensemble S2
divergence-freeV -VE(x;S2)=0.

It is interesting to note that the potential and the velocity
in the subensembles S and S2 are deterministic quantities in The nested subensemble method provides for a suben-
x=0 [¢(0)=¢°, v(0)=VO for all realizations in S, and thus semble S an ensemble of trajectories, the average trajectories
also in S2. As |x| grows, the average values decay to zeroX(t;S2), one for each subensemble S2 contained in S. A
and the fluctuations build up progressively and eventuallyweighting factor P;(S2) is attributed to each trajectory

C. Lagrangian statistics in the subensemble S
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X(t;S2). The Lagrangian statistics in the subensemble S is 1 1 R

obtained by performing weighted averages over these trajec- D(t) = o [E(0,0)E,4(0 O)f de f du
tories. So the average Lagrangian velocity inv&(t;S), is Vem VERLDELL Y S0 0

determined by averaging'(t;S2 obtained from Eqs(26) (¢°)? u? _

and(27) over all subensembles S2 contained in S, expl - 2E(0.0) 2E14(0,0 XS (34

Vi(t:S) = J A0, de2,dd2,PL(SAVEX(t:S2);S2). and
L(t)=D'(1), (35

29 where X;(t;S) is the component of the average trajectory
The average trajectory in the subensemble X8t;S)  alongv®, determined from Eq30), andD’(t) is the deriva-
=(X(1))s, is determined by averaging(t;S2), the solution tive of the functionD(t). We note that the same analytical
of Eq. (27): expression foD(t) in terms of the average trajectoxy(t; S)
is obtained in[18] by means of the decorrelation trajectory
X(t;S):f dep3,de2,dp,.P1(S2X(t;S2). (30) method. The difference is that the average trajectory was
determined there as a solution of a Hamiltonian equation
The dispersion of the trajectories in i(t;S)={(x(t) while here it is the averag@®0) of the average trajectories in

~X(t;9)2)g i S2.

4t = f A2 0, 0d0,P1(SDXE(L:SD) - XE(L:S). IV. DISCUSSION AND EXPLICIT CALCULATIONS
The nested subensemble method actually is based on the
(31 classification of stochastic trajectories in grou(siben-
semble$ according to some resemblance between them. The
Ynost important criterion in this classification is the value of
Mhe potential at the starting point of the trajectories. All tra-
jectories contained in such a group evolve on contour lines
with the same value of the potential. Consequently, their
PS(x,t) = f dgpd,d¢d,de2,P1(S28[x - X(;S2)]. (32)  paths and periods are statistically similar in the sense that
they have an average size and period. Thus this condition
We note that Eqs(30)<32) are exact. determines a global resemblance of the trajectqegtended
The PDF for the Lagrangian potenti@[x(t)] in the sub- ~ at long timg. This condition is imposed beginning with the
ensemble S obtained by this method equ%(&— d)o) since first level of ClaSSiﬁcatior(in the SubensembleS).SOther
the average. This shows that the approximaii@6) intro-  tives of the velocity in the origin. These are not conserved
duced in this method ensures entirely the statistical propeduantities and thus they influence the shape of the trajectory
ties of the Lagrangian potential. only at small time for time intervals that grow with the num-

The statistical properties of the distance between two traber of imposed conditions. The value of the initial velocity is
jectories in a subensemble $(t)=x'(t)-x(t) with x’(0)  fixed in the subensemble S; then each subensemble S is di-
=5, andx(0)=0, can also be determined using the averagé’ided in smaller subensembles S2 according to the value of
over the subensembles S2. The average trajectory in nge derivatives of the velocitgsecond derivatives of the po-
X'(0;S2=(x'(t))s, is the solution of Eq27) with the ini- tential). This classification can continue in principle and at

tial conditionX'(0; S2 = &,. The average, the dispersion, and each step the resemblance of the trajectories contained in a

the PDF of&(t) in a subensemble S are determined by equagrOUp is increased and the number of groups grows. The

. - . . approximation consists in neglecting the differences between
“Cfnsf similar t_o Eq(30-32 whereX(t; 52 is replaced by the trajectories in a group. With this condition it is possible
X'(t;S2)-X(t;S2). to determine an average trajectory for each subensemble.
D. Running diffusion coefficient Thus the nested subensemble method determines a set of
] . o trajectories[X(t;S2) for the second order considered Here
The correlation of the Lagrangian velocity in the whole 5y 5 weighting factor for each one. Then, the statistical
set of reghzat.lons' is deter_rr!med using E({SZ) ar‘_d (29). properties of the stochastic trajectory are obtained by per-
The running diffusion coefficien®) is obtained by integrat-  forming weighted averages over these trajectories. Except for
ing the LVC (12) as some special case, the trajectorié&;S2) have to be nu-
merically calculated by solving the Hamiltonian systéi).
Di(t) :f f dg’dvOPy(S)uPX(t;S). (33)  This procedure appears to be very similar to a direct numeri-
cal study of the simulated trajectories. There are, however,
In the case of an isotropic stochastic field, the integral oveessential differences. The average trajectories are obtained
the orientation of the velocity® can be performed analyti- from a rather smooth and simple time-independent Hamil-
cally [18] and one obtains for the static case tonian. They are periodic functions and thus are calculated

The PDF for the trajectories in S is determined by integratin
the PDF in the subensemble S2, which in this approximati
is Ix—=X(t;2)],
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only for a period. The number of trajectories is much smaller 3 ' ' '
than in the numerical study due to the weighting factor de- | (@) P
termined analytically. This very much reduces the calculation Prias
time, such that it can be performed on a PC. Moreover, suct 1+ .
a calculation performed for a static stochastic potential with
a given EC determines the solution for the time-dependent __
potential with arbitrary time factor in the EGee Sec. VI B 8")
The nested subensemble method determines the statlstlc
of the trajectories in subensembles S and the LVC for tracer<
advected in a Gaussian stochastic potential with given EC.
The main condition for using this method is that the transport
is stationary, which usually corresponds to stationary and
homogeneous stochastic potentials. The time-dependent dif
fusion coefficient(34) is obtained for an isotropic potential
but this is not a restriction for this method. The above calcu-
lations are for a static potential but they can be extended tc
the time-dependent cagsee Sec. VI B
We have developed an algorithm for calculating the sta-
tistical characteristics of the trajectories in subensembles <
and the running diffusion coefficie(4) for given EC of the
potential. The solutions of Eq§27) are calculated for a pe-
riod using a variable integration step monitored by the pre-
cision obtained for the potential. Precisions of the order of
10°3-10* ensures the stability of the calculat&€dt). The
order of performing the integrals in E¢34) appears to be g
important. The integral ovar is first calculated. This param- £
eter is factorized in the expression of the average Euleriar<®
potential in SZEq. (23)] and is introduced in the time vari-
able r=ut Thus, only the trajectories with=1 need to be
calculated. The values of the functiofj(ut;S2) are deter-
mined from the trajectory obtained from E@7) with u=1
by interpolation and using the periodicity. The integration
stepdu is determined at each time such that a large enough

number of pointg30-50 exists on each period. When there -1.5 -1 -0.5 0 05 1 15

are more than about 50 periods on the range dfie inte- X, (t:S2)

gration is not performed because its value is negligible. The

next integrations are Oveﬁ’m 4’11’ and ¢22 They are calcu- FIG. 1. Examples of paths of the average trajectorles in suben-

lated on constant step meshes with 31-61 points. Last |§embles S2 obtained from EQ7) for several values of] and for
performed the integral oves’. Due to trajectory trapping, ¢°=0,u=2 (&) and¢°=1,u=2 (b).
the range of this integral is continuously reduced as time
increasesgp,,,— 0 whent— o). The range of this integral is specify the EC function of the stochastic potent&l which
determined as a function of time. The calculations start withye choose as
a large value oS, .., as obtained from the exponential fac-
tor. At the time when the integrand becomes approximately 1
zero on half of this rangey, . is reduced and the integration E(x) = 1+08+x3)/2°
of the trajectories is taken again framO0 for the new values 12
of ¢° The mesh forg® has variable steps that increase to-This is the EC function of a normalized stochastic potential
ward large values of° because the function has strong with amplitudeE(0)=1, \.=1, andr;=1. Thus in Figs. 1-7
variations at smalky’. The tests performed with this code the time unit isr and the length unit ia... The velocityv®
have shown that the numerical calculations are rather fashat defines the subensembles S is taken along;tlaeis.
and accurate and they can be advanced up to large values of The average trajectory in the subensembles S2, the solu-
time. For instance, using the decorrelation trajectory metho@on of Eq.(27), is a periodic function of time and evolves on
the duration of the calculation @ (t) up to time of the order a closed path for most of the subensembles S2. As seen in
1(% is of the order of a few seconds on the usual PC. UsingFig. 1, there is a clear difference between the trajectories
the nested subensemble method the calculation time is of therresponding to smalkp®| [Fig. 1(a) for ¢°=0] and large
order of 10 h because the number of calculated trajectorieig®| [Fig. 1(b) for ¢°=1]. In the first case there are open
increases by a factor of 10 trajectories, large displacements, and large periods for the
closed paths. In the second case the trajectories have small
V. TRAJECTORY STRUCTURES size and their periods are much smaller. This is due to the
We present in this section typical results obtained for onefact that at smal|¢°| the trajectories are close to the separa-
and two-particle statistics in a subensemble S. We need twix of the Hamiltonian(23) while at largel¢°| they are close

(36)
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FIG. 2. Examples of paths of the average trajectories in suben-
sembles S obtained from E¢B0) (continuous lines The results 0.8F

1/244.
obtained with the decorrelation trajectory method are also plotted o7l a4 ®S)
for comparisondashed lineg | h% N¢® T Tmese-ee-sssssessso--=-
06f
to its elliptic points. The size of the path and the period of the 0.5 d;/Z(t;s)
trajectory depend on the six parameters that define the neste ,
subensembles S, and S2.
The average trajectory in the upper subensemble S is ob- %3
tained from Eq.(30). Typical average trajectories in S are 0.2
presented in Figs. 2 and 3. These trajectories are not peri- ,,
odic. They evolve on spiral shaped paths, except for the sub-
ensemble withp°=0 which yields a continuous displacement ~ °©
alongVv® (Fig. 2). The size of the paths depends on the pa- -o0.1
rameters of S¢° andu=|v: it is large for small|¢° and ~ _, , ,
largeu and it decreases 48°| increases. The displacement 0 5 1 15 20 25 30 35 40
along the initial velocity® decays to zero in a characteristic !
time 7, while the displacement perpendicularu® saturates FIG. 3. Time evolution of the average trajectory and of the

at a finite value whose sign is the same as the sigt’dFig.  dispersion[Eq. (31)] in two subensembles S: one wigP=0, u
3(b)]. The saturation timery depends on the parameters of =1 (a) and the other withp°=1, u=1 (b).
the subensemble S. It increases whé? decreasesas the
size of the pathsand wheng®— 0 it becomes infinite. Thus The trajectories in the subensemble S are Gaussian at
the average trajectories in S obtained here are completegmall timet< 7 but their distribution is strongly modified as
different from those obtained by means of the decorrelatioriime increases. The PDF obtained from E&2) is repre-
trajectory method18]. The latter are periodic functions of sented in Fig. 4. Important differences can be observed be-
time and their paths are clos¢see Fig. 2 for comparison  tween the subensembles witf=0 [Fig. 4@)] and those
This means that the fluctuations of the trajectories have with large|¢% [Fig. 4(b)]. In the first case the PDF is sym-
strong influence on the average trajectory in S. They detemetric around/’; it develops a narrow maximum &t=0 and
mine the time saturation of the average trajectory in S by th@n annulus that expands continuously in the directiovfafs
mixing of the closed periodic trajectories. time increasegFig. 4(@)]. The velocity of this part of the
The dispersion of the trajectories in the subensemble $ajectories is larger than the average velocity. The path of
obtained from Eq(31) is presented in Fig. 3 as a function of the average displacement is also represented in Fay(4d
time for °=0 [Fig. 3a)] and #°=1 [Fig. 3b)]. One can see line). The end point of this curve is the average position at
that in the first case the dispersion continuously increaseie moment corresponding to the representation of the PDF
[Fig. 3@)] while in the second case it saturates after a morét=100r). It is located between the two maxima of the PDF
complicated evolutioriFig. 3b)]. The saturation time is the in a region where the latter is practically zero. The PDF for
same as for the average trajectory. The amplitude of the trasubensembles with larde’| is completely different. It satu-
jectory fluctuations is comparable with the average displacerates in a timerg at a function that has a narrow maximum in
ment. The small time evolution of the dispersion is veryx=0 and extends only on a small regigwith x,>0 for
slow, approximately as*, and thus much slower than the ¢°>0) [see Fig. 4b)].
usual ballistic regimel, ~ t2. This is due to the fluctuations of Typical results obtained for the second moment of the
the Eulerian velocity in S which are small nearO0. relative displacemens(t)=x’(t)-x(t), Aj(t)=(&(t))s are
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(@) 1

FIG. 4. (Color) Contour plot of the PDREQ. (32)] of the trajectories at time in two subensembles S: one wig?=0, u=1 for t
=100r; (a) and the other withp®=1, u=1 for t=30r, (at saturation(b). The path of the average trajectory is also represemeatiling on
the interval[0,t].
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10 . . . the statistical characteristics of the relative motion. It pro-
duces an anomalous clump effect. In the absence of trapping
the small time evolution ofA;(t) is exponential for a very
small initial separatiod, and is given by the Richardson law
for larger &, [5,6]. The process of trajectory trapping strongly
enhances the clump effect, determining a much weaker in-
crease ofA;(t) and a very long clump lifetime, much larger
than 7;; and than the saturation time [Fig. 5b)].

The PDF ofd(t) in a subensemble S shows that the rela-
tive motion is not Gaussian. In the case of latgd|, the
PDF remains very localized around zero and saturidis
6(b)]. In the case of free trajectori¢g®=0), the PDF has a
more complicated shape and extends continuously. At large
times it is similar to the PDF of the trajectori@sig. 6a)].

Thus the statistical characteristics of the trapped trajecto-
ries (corresponding to subensembles S with a large values of
|¢°|) are completely different from those of free rajectories
(obtained in subensembles wit=0 ). The average, the
dispersion, and the PDF of trapped trajectories and of the
distance between them saturate. This shows that there is a
quasicoherent motion in such subensembles consisting in tra-
jectory rotation on closed paths, with localized PDFs and
small saturated dispersion. The trajectories form structures
similar to fluid vortices. These structures or eddying regions
are permanent in static stochastic potentials. The saturation
time 75 represents the average time necessary for the forma-
tion of the structure. The average size of the structure is
represented by the asymptotic average displace®¥¢ttS)|
att> 7. The dispersion of the trajectories in the structure is
given by the asymptotic value df(t;S). We have found that
these characteristic parameters of the trajectory structures de-
pend on the parameters of the subensemble S. The size, the
. : dispersion, and the buildup time of the structures increase

107 10° 10° 10* 0 . :
t when |¢° decreases and go to infinity @=0. The time

evolution of the relative square displacemexit) is very
slow, showing that neighboring particles have a coherent mo-
tion for a long time, much longer than.

For free trajectoriegthat move along contour lines of the
potential with #°=0), the average and the dispersion con-
tinuously increase and the PDF continuously spreads. The
clump effect is absent and the relative motion becomes rap-

FIG. 5. The second moments of the relative displaceng(t}
(continuous lines compared toMi(t)E(xiz(t))S (dashed linesin
two subensembles S: one with?=0, u=1 (a) and the other with
¢°=1,u=1 (b).

presented in Fig. &continuous linescompared with the sec-

. : s
qnd moments of the traJeCto_”eMi(t)j<Xi (_t)>5 (dashed idly incoherent, after a time interval smaller thajp Only
lines). .In the subensembles'wnh. Iarg¢ | [Fig. S(b)],' the these trajectories that are not contained in the structures con-
_e\{qlutlon ofA;(t) shows t_hat it maintains for a long time th_e tribute to the transport,

initial value &5 and that it reaches values comparable with

M;(t) only after a very long timéof the order of 10@;). The

relative motion is governed by the Richardson law(t) VI. TRANSPORT

~1t2 only for t< 7. After the saturation oM; at 7, the dis-
tance between trajectories increases slowly, approximately as
Aj(t)~t*5 up to the moment when it saturates at a value The Lagrangian velocity correlation and the time-
comparable with that oM,. Thus the relative motion is dependent diffusion coefficient for the whole ensemble of
strongly hindered by trapping, which shows a very strongirajectories are determined from E@85) and(34). The in-
degree of coherence of the stochastic trajectories. The cluniggral over the parameters of the subensembles S of the av-
effect is thus very strong for the trapped trajectories. On therage displacement in S has to be calculated. S¥itgS)
contrary, the clump effect is very wedkractically absent decays to zero in a time(S), the trajectory structures have
for the trajectories which are in the subensembles with only a transient contribution to the running diffusion coeffi-
=0. As seen in Fig. @), A;(t) have values comparable to cient. At times larger than(S) the contribution of the sub-
those ofM;(t) from the first stage of the evolution, at time ensemble S vanishes. As time increases the diffusion coeffi-
much smallerr,. Thus, the trapping has a strong influence oncientD(t) is determined by a smaller and smaller number of

A. Static stochastic potential
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(@ 1

FIG. 6. (Color) Contour plot of the PDF of the distané&) in two subensembles S: one wig=0, u=1,t=100r, (a) and the other with
¢°=1,u=1, t=7000r; (at saturation(b).
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ries, which characterizes this nonlinear stochastic process, is
directly described at each order of our approach. The results
obtained in first ordefthe decorrelation trajectory method

for D(t) are thus validated by the present second order cal-
culations.

DD,

A B. Time-dependent stochastic potential

i For a time-dependent potenti@lx,t) (finite 7. andK), it
N is also possible to apply the nested subensemble method fol-
AN lowing the same procedure as above. A very simple analyti-
. cal solution is obtained when the stochastic potential has
independent time and space variations such that its EC func-
tion isE(x)h(t). In this case, the average Eulerian potential in
B the subensemble S is given by E&3) multiplied with the
10, - 100 X 2 factor h(t). This factor is transmitted to the average Eulerian
f velocity in S(24) and it appears in Eq27) for the average
trajectory in S2. A change of variable frotrto

FIG. 7. The time-dependent diffusion coefficiéddft) obtained
from Eq. (34) with the nested subensemble meth@dntinuous t
line) compared with the result of the decorrelation trajectory 0(t)=f h(ndr (37)
method(dashed ling 0

gan be performed in Eq27) and thus the average trajectory
in S2 for a time-dependent potential can be written in terms
of the average trajectory for the static casexX4#(t); S2).

trajectories, those contained in large structures with larg
saturation time. The results obtained E(t) are presented in
Fig. 7 where the dimensionless functitit)=D(t)/Dg is 4 )
plotted (continuous ling The transport is subdiffusive in The ar.gumenﬁ(tldetermmed by the time dependence of the
such a static stochastic potential. One can observe the chanf@tential is é(t)=t at smallt and saturates at a constant
that appears at= 7. The running diffusion coefficient be- Which is the decorrelation time|(t) — r.. The same expres-
gins to decrease and eventually goes to zero. A power la§ion (34) is eventually obtained for the time-dependent dif-
decay was obtained at- 7, asD(t) ~ (t/7,)"%*2 The LvC  fusion coefficient but withX,(t; S) replaced byX,(d(t); S).
becomes negative &t r; and after a minimum it has a long Thus the diffusion coefficient in the time-dependent case is
negative alge_zbraic tz?\il that decays_ to zero. This sho_vys D'(t) = D[ 6(1)], (39)
memory persistence in the stochastic process. The positive
and the negative parts aft) have equal time integrals such whereD is the diffusion coefficient for the static potential
that [5L(7)d7=D(t) — 0. The shape of the LVC was analyzed With the same space correlation, given by E#). The limit
in [19], where it was shown that this stochastic process id0r t— < is finite which shows that the transport is diffusive
unstable in the sense that any weak perturbation determineda @ time-dependent stochastic potential and the asymptotic
strong modification of the transport and anomalous diffusiorfliffusion coefficient is
regimes with diffusion coefficients which increase with the td _ _
increase of the perturbation strength. The mean square dis- D*=D(7e) = DeF(7o)- (39)
placement igx3(t)) ~t°%8 and thus the process is subdiffu- This equation shows that the asymptotic diffusion coefficient
sive. is determined by the time-dependent diffusion coefficient
The result obtained fob(t) with the decorrelation trajec- D(t) corresponding to the static potentj&l(t) is the function
tory method is also plotted in Fig. (@ashed ling It is sur-  plotted in Fig. 7 and represents the normalized diffusion co-
prisingly close to the result of the nested subensemblefficient in the static potential anlg=(\2/7)K=V\ is the
method although the two methods yield completely differentBohm diffusion coefficient obtained when trajectory trapping
average trajectories in the subensemble¢F. 2). This  is neglectedl
shows that by introducing the subensembles S2 in the nested We note that Eqq:38) and(39) are valid for all values of
subensemble method a strong qualitative improvement of ththe Kubo numbekK. In the limit of smallK, the quasilinear
statistical results in the next upper subensemble S is obtainegsult is recovered from E¢39) and, at largek, D' is re-
and only a small correction at the level of the whole set ofduced compared to the Bohm diffusion coefficient by a fac-
realizations. It is thus expected that the development of théor F(K) <1 which accounts for trajectory trapping. For the
method by introducing higher order derivatives and the corabove EC function of the potential, E@®9) gives the larg&
responding nested subensembles S3, S4, etc., would yieftaling IawD‘d%()\E/TC)K7 with y=0.58. The exponen
only small corrections for the physically interesting resultsdepends on the EC function of the potential, namely, on its
that concern the diffusion coefficiedt(t) and the statistical space dependence at large distances. It is not a fixed value as
properties of the trajectory structures. This nested suberin the estimation based on percolation thefdy]. A study of
semble method appears to be quickly convergent. This is the effect of the EC function of the potential on the scaling of
consequence of the fact that the mixing of periodic trajectothe diffusion coefficient is presented [&8].
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Thus, the results obtained for the static case permit us tetochastic potential. We have shown that the statistical be-
determine the asymptotic diffusion coefficient in a time- havior of the trapped trajectories is completely different from
dependent stochastic potential. This property appears in thbat of the free trajectories. The trapped trajectories have a
results of the nested subensemble metteod! in the decor- quasicoherent behavior. The average, dispersion, and prob-
relation trajectory methgdbut it is possible to demonstrate ability distribution function for these trajectories and for the
in general that the time dependence of the diffusion coeffidistance between two trajectories saturate. A very strong
cient in the subdiffusive static case determines the Kub@nomalous clump effect characterizes neighboring trapped
number dependence of the asymptotic diffusion coefficient irtrajectories, which have clump lifetimes much longer than
a time-dependent potential. The subdiffusive transport correthe time of flight. This shows that these trajectories form
sponds to Lagrangian correlatiobh&) which have the prop- structures similar to fluid vortices. The statistical parameters

erty: of these structuregsize, buildup time, dispersigrare deter-
. mined. The trajectories contained in such structures do not
D(t) = f L(t)dt— 0. (40) contribute to the large time diffusion coefficient. The latter is
0 too determined by the free trajectories which have a continu-

ously growing average displacement and dispersion. The
We suppose thab(t) decays to zero aB(t)~(t/7)* and  probability distribution functions for both types of trajecto-
consequently the LVC behaves Bt) =~-aV(t/ 7). In ries are non-Gaussian. Both types of trajectories are far from
the time-dependent case, the variation of the stochastic fieldaussian and Markovian processes.
produces the decorrelation of the Lagrangian velocity and The Lagrangian velocity correlation and the time-
consequently the LVC is cut down &% 7. The asymptotic  dependent diffusion coefficient are determined as functionals
diffusion coefficient can be evaluated as the integral from Qof the Eulerian correlation of the stochastic potential. Long

to 7. of the LVC and using Eq(40) one can write time algebraic tails are obtained for these functions, which
® A2 determine a subdiffusive transport in a static potential and
D= -f L(t)dt= DgK™*= —SK™, (41) asymptotic diffusion coefficients with weak dependence on

7 Tc the Kubo numberD ~K? with y<<1) for time-depending

. . . stochastic potentials.
which givesy=1-a. Thus the exponent of the time decay . . g
A - . . We have developed a semianalytical statistical approach,
of the subdiffusive transport coefficient in the static case de; P Y bp

termines the exoonent of thedependen f1h mptofi the nested subensemble method, which is in agreement with
ermines the exponent ot tiredependence ot the aSymploliC o y,e statistical constraints imposed by the invariance of the
diffusion coefficient in the time-dependent case. This mean

! : ; ; Botential in each realization. Essentially, this method reduces
that Eq.(39) holds even if the evolution dd(t) is not IVeN  the problem of determining the statistical behavior of the
by Eq.(38) as hf"‘ppens’ for _example, when the EC fur'Ct'onstochastic trajectories to the calculation of weighted averages
of the p(_)tentlal IS _not factorized. . . of some smooth, deterministic trajectories determined from

.The time variation of the potential determmes a_decorre-the EC function of the stochastic potential. The one- and
lation effect. After a time of the order; the configuration of =y, 15int | agrangian statistics are determined here, but this

the stochastic potential changes. A competition appears bec\'pproach can be extended to multipoint Lagrangian statistics,

tween the intrinsic tendency of the trajectories to form StruC, hich were shown recently to be very relevant for the study

tures and the destruction of these structures produced by tlg)q passive field advectiof6—9

time variation of the potential field. Structures witg(S) The general conclusion of this work is that the existence
= 7, cannot exist and the corresponding trajectories producgs 4 | agrangian invariant in the evolution equatiom each

a diffusive transport. Small structures that build up rapidlyrealizatior) determines long time correlatioigemory ef-

(with 7((S) < 7) still exist if the correlation time of the field fecty and coherenceérajectory structurésin the stochastic
is longer than the flight tim¢r.> 7y, K> 1]. These vortical  y6tion.

structures do not contribute to the large time values of the
diffusion coefficient and the transport is reduced. ACKNOWLEDGMENTS
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