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The special problem of transport in two-dimensional divergence-free stochastic velocity fields is studied by
developing a statistical approach, the nested subensemble method. The nonlinear process of trapping deter-
mined by such fields generates trajectory structures whose statistical characteristics are determined. These
structures strongly influence the transport.
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I. INTRODUCTION

Test particle motion in stochastic velocity fields(or tracer
advection) is a generic problem in various topics of fluid and
plasma turbulence, astrophysics, or solid state physics[1–5].
This problem is strongly related to the process of advection-
diffusion of passive and active fields, which was very much
studied in recent years, and important progress was achieved
[6–9].

In this context, particle motion in two-dimensional
divergence-free velocity fields represents a special case. Kra-
ichnan has shown, for the first time, in a study based on
numerical simulations[10], that the existing analytical meth-
ods are not adequate for this type of problem. The cause of
this anomaly is the trapping of the particles, which appears in
such velocity fields when they have slow time variation. The
trapping consists in trajectory winding on almost closed
paths. A typical trajectory has a complicated shape with such
localized trapping events separated by long jumps. Conse-
quently, the probability distribution function is non-
Gaussian. Thus the methods based on this hypothesis(like
that of Corrsin[11,1] and the direct interaction approxima-
tion [10,12,13]) are not adequate for this specific case.

This special problem of diffusion in two-dimensional
divergence-free velocity fields describes, for instance, the
transport in turbulent magnetized plasmas or in incompress-
ible fluids. It was studied especially by means of direct nu-
merical simulations([14] and the references therein) or on
the basis of simplified models[15,16]. There is also a quali-
tative theoretical estimation of the scale law for the
asymptotic diffusion coefficient[17] based on an analogy
with the percolation process in stochastic landscapes. The
case of collisional particle motion in such static velocity
fields was analyzed by means of renormalization group tech-
niques ([2] and the references therein) and the asymptotic
time behavior of the mean square displacement was deter-
mined. The evolution of the diffusion process of test particles
was determined only in[18] where a statistical approach, the
decorrelation trajectory method, was developed. It yields
analytical expressions for the time-dependent diffusion coef-
ficient Dstd and for the correlation of the Lagrangian velocity
Lstd that are qualitatively valid for the whole range of the
Kubo number(see the next section for the definitions). This

method could be extended to more complicated physical sys-
tems which contain particle collisions, average velocities, or
a supplementary component of the motion perpendicular to
the two-dimensional plane([19] and the references therein).
It was shown that the presence of trapping determines
memory effects inLstd and a rich class of anomalous diffu-
sion regimes in the presence of a decorrelation mechanism
[19]. These studies have shown that the decorrelation trajec-
tory method provides a qualitatively good description of the
trapping process. However, due to the rather strong approxi-
mation introduced in this method(see Sec. III), there are
several qualitative aspects that are not well described
[20,21]. They are related to trajectory fluctuations and their
correlation with the stochastic velocity.

The above results concern the effect of trapping on the
individual trajectories. We show here that trapping also pro-
duces collective effects. It determines coherence in the sto-
chastic motion in the sense that bundles of neighboring tra-
jectories form localized structures similar to fluid vortices.
The statistical characteristics of trapped and free trajectories
are separately studied and the average, the dispersion, and
the probability distribution, function for the trajectories and
for the distance between two neighboring trajectories are de-
termined.

The method developed for this study, the nested suben-
semble method, is a semianalytical statistical approach
which extends and improves the decorrelation trajectory
method[18] by taking into account the fluctuations of the
trajectories in the subensembles. This is a Lagrangian
method constructed with the aim of being in agreement with
the statistical constraints imposed by the conservation of the
Lagrangian potential in each realization. We note that our
method is completely different from the recent Lagrangian
approaches based on statistical conservation laws(see the
review [6]).

II. THE PROBLEM

Particle advection in a two-dimensional stochastic veloc-
ity field is described by the nonlinear Langevin equation

dxstd
dt

= vfxstd,tg, xs0d = 0, s1d

wherexstd represents the trajectory in Cartesian coordinates
x;sx1,x2d The stochastic velocity fieldvsx ,td is divergence-
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free:= ·vsx ,td=0, and thus its two componentsv1 andv2 can
be determined from the stochastic scalar fieldfsx ,td as

visx,td = «i j
] fsx,td

] xj
s2d

where «i j is an antisymmetric tensor(«12=1, «21=−1, «11
=«22=0). The potentialfsx ,td is considered to be a station-
ary and homogeneous Gaussian stochastic field, with zero
average and given two-point Eulerian correlation(EC) func-
tion

Esx,td ; kfsx1,t1dfsx1 + x,t1 + tdl s3d

where k¯l denotes the statistical average over the realiza-
tions offsx ,td. The statistical properties of the space deriva-
tives of the potential are completely determined by those of
the potential. They are stationary and homogeneous Gaussian
stochastic fields likefsx ,td. The two-point Eulerian correla-
tions of the derivatives offsx ,td are obtained as derivatives
of the potential EC functionEsx ,td. We introduce the nota-
tion EiP;kPsx ,td;kfiPsx1,t1dfkPsx1+x ,t1+ tdl where fisx ,td
;s] /]xidfsx ,td and the subscript ofE contains the indices of
the derivatives of the potential inx1,t1 (left factor) separated
by a semicolon from the indices of the derivatives of the
potential inx1+x, t1+ t (right factor). The absence of indices
corresponds to a factorf inside the average. One obtains

EiP;kPsx,td = s− 1dn ]

] xi
¯

]

] xk
¯Esx,td s4d

where n is the number of derivatives of the first factor
fiPsx1,t1d inside the above average. In particular, the veloc-
ity vsx ,td is such a stationary and homogeneous Gaussian
stochastic field. The correlation of the velocity components
and the potential-velocity correlations are obtained using
Eqs. (2) and (4). These correlations will be used in the fol-
lowing calculations.

The potential is a continuous function ofx and t in each
realization and it determines a unique trajectory as the solu-
tion Eq.(1). Starting from the above statistical description of
the stochastic potential and from an explicit EC function
Esx ,td, one has to determine the statistical properties of the
trajectories. In particular, the Lagrangian velocity correlation
(LVC), defined by

Lijstd ; kvifxs0d,0gv jfxstd,tgl s5d

for a stationary process, will be evaluated. The mean square
displacementkxi

2stdl and its derivative, the running diffusion
coefficientDistd, are determined by this function as[22]

kxi
2stdl = 2E

0

t

dt Liistdst − td, s6d

Distd =E
0

t

dt Liistd. s7d

This kind of Langevin problem, named in the literature tracer
advection or diffusion by continuous movements, is nonlin-
ear due to the space dependence of the potential, which leads

to x dependence of the EC function(3). The importance of
the nonlinearity is characterized by the Kubo number defined
by

K =
Vtc

lc
=

tc

t fl
s8d

whereV is the amplitude of the stochastic velocity,tc is the
correlation time, andlc is the correlation length. These pa-
rameters appear in the EC function of the velocity as the
maximum value at the originfV2=Eiis0,0dg and the charac-
teristic decay time and length of this function. The Kubo
number is thus the ratio oftc to the average time of flight of
the particles over the correlation length,t fl =lc/V. It mea-
sures the particle’s capacity of exploring the space structure
of the stochastic velocity field before it changes.

For small Kubo numbers the time variation of the velocity
field is fast and the particles cannot “see” the space structure
of the velocity field. The conditionK!1stc!t fld defines the
quasilinear regime(or the weak turbulence case) for which
the results are well established: the diffusion coefficient is
Dql=slc

2/tcdK2=V2tc and the trajectories have Gaussian dis-
tribution.

For K.1stc.t fld the time variation of the stochastic po-
tential is slow and the trajectories approximately follow the
contour lines offsx ,td. This produces a trapping effect: the
trajectories are confined for long periods in small regions. A
typical trajectory shows an alternation of large displacements
and trapping events. The latter appear when the particles are
close to the maxima or minima of the potential and consist of
trajectory winding on almost closed paths. The large dis-
placements are produced when the trajectories are at small
absolute values of the potential. Trajectory trapping appears
for K.1 and becomes stronger asK increases up to the limit
of static fieldssK ,tc=`d where the trapping is permanent. It
determines the decrease of the diffusion coefficient and the
change of its dependence on the Kubo number from the
Bohm scaling[23,24] DB,slc

2/tcdK=Vlc to a trapping scal-
ing Dtr ,slc

2/tcdKg with g,1. In the limit of a static poten-
tial field (K, tc→`) the transport is subdiffusive:Dstd
, t−a→0 with a.0 and kx2stdl, t1−a grows more slowly
than linearly. It can be shown(see Sec. V) that g=1−a and
thus the same power law describes the long time behavior of
the mean square displacement in a static potential and the
dependence onK of the asymptotic diffusion coefficient in a
time-dependent potential.

We show here that, in addition to this strong influence on
transport, trapping generates trajectory structures similar to
fluid vortices. It appears coherently for bundles of neighbor-
ing trajectories leading to eddying regions. The statistical
characteristics of these trajectory structures are determined.

III. THE NESTED SUBENSEMBLE METHOD

The motion described by Eqs.(1) and(2) has the velocity
at any moment perpendicular to the gradient of the potential
in the instantaneous positionxstd and the time variation of
the Lagrangian potential is produced only by the explicit
time dependence offsx ,td These eqations are of Hamil-
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tonian type with the potential as the Hamiltonian function.
Thus, for the static case where]f /]t=0 stc,K→`d, the po-
tential is an invariant of the motion. The trajectories are on
the contour lines of the potential and the motion is periodic.
For slowly varying or large amplitude potentials such that
tc.t f l (i.e.,K.1), ]f /]t is small during a time of the order
t f l and there is an approximate invariance of the potential
along the trajectory in each realization. Trajectory trapping is
essentially related to this invariance of the Lagrangian poten-
tial. Thus, a statistical method is adequate for the study of
this process if it is compatible with the invariance of the
potential.

The main idea in our approach is to study the Langevin
equation(1) in subensembles S of realizations of the stochas-
tic field, which are determined by given values of the poten-
tial and of the velocity in the starting point of the trajectories:

sSd: fs0,0d = f0, vs0,0d = v0. s9d

The invariance of the potential appears clearly in S. The
probability distribution function of the Lagrangian potential
ffxstdg is

PSsf,td ; kdhf − ffxstdgjlS= dsf − f0d s10d

wherek¯lS denotes the average taken on the realizations in
S. The approximations introduced in the evaluation of the
correlation of the Lagrangian velocity must be compatible
with Eq. (10). Moreover, the second condition in(9) brings
an important simplification in determining the LVC for sta-
tionary processes. It actually reduces the two-time correla-
tion of the velocity to the(one-time) average velocity. The
stochastic(Eulerian) potential and velocity in a subensemble
S defined by condition(9) are Gaussian fields but nonstation-
ary and nonhomogeneous, with space- and time-dependent
averages and dispersions. The averages depend on the pa-
rameters of the subensemble and are defined by

FEsx,t;Sd ; kfsx,tdlS, VEsx,t;Sd ; kvsx,tdlS s11d

where the superscriptE is used to underline the Eulerian
nature of these quantities. They are equal to the correspond-
ing imposed condition(9) at x=0 andt=0 and decay to zero
at large distance and/or time. The mean squares of the poten-
tial and velocity fluctuations are zero atx=0, t=0 and in-
crease up to values corresponding to the whole set of real-
izations at large distance and/or time. The existence of an
average Eulerian velocity in the subensemble determines an
average motion. The LVC(5) and the time-dependent diffu-
sion coefficient(7) can be expressed as functions of the set
of average trajectories in the subensembles S.

This subensemble or conditional analysis of the Langevin
equation was introduced in[18] where the decorrelation tra-
jectory method was developed based on an approximation
that essentially consists in neglecting the fluctuations of the
trajectories in S. The approach presented here is a develop-
ment of this method, which considers the fluctuations of the
trajectories in S and determines their probability distribution
function (PDF). We note that similar subensemble averages
of the Eulerian stochastic velocity field were studied in[25]
with the aim of showing that eddies and structures exist even
in isotropic turbulence. Subensemble Lagrangian averages

are estimated in[26] on the basis of a rather strong assump-
tion and in[16] for a model of rotating fluid layers.

More precisely, the LVC(5) for the whole set of realiza-
tions is obtained by summing up the contributions of each
subensemble. The latter can be written as
kvifxs0d ,0gv jfxstd ,tglS=vi

0VLst ;Sd where VLst ;Sd
;kvfxstd ,tglS is the average Lagrangian velocity in S and
thus

Lijstd =E E df0dv0P1sSdvi
0Vj

Lst;Sd. s12d

HereP1sSd is the probability that a realization belongs to the
subensemble S and is obtained as

P1sSd =
1

s2pd3/2

1
ÎEs0,0dE1;1s0,0dE2;2s0,0d

3expS−
sf0d2

2Es0,0d
−

sv1
0d2

2E1;1s0,0d
−

sv2
0d2

2E2;2s0,0d
D
s13d

whenEsxd has a maximum atx=0, as happens in most cases.
Equation(12) is an exact equation. Thus the diffusion coef-
ficient (7) is determined by evaluatingVLst ;Sd.

Neglecting the fluctuations of the trajectories in S,
VLst ;Sd is approximated in the decorrelation trajectory
method [18] with the average Eulerian velocity calculated
along the average trajectory:

VLst;Sd > VEfXst,Sd,t;Sg s14d

where Xst ,Sd is the average trajectory in S,Xst ,Sd
;kxstdlS. Then, this average(decorrelation) trajectory in S is
determined from the equation

dXst,Sd
dt

= VEfXst,Sd,t;Sg s15d

so that an explicit expression forVLst ;Sd is obtained. It was
shown that Eq.(15) is of Hamiltonian type with the Hamil-
tonian function equal to the average Lagrangian potential
approximated byFEfXst ,Sd ,t ;Sg. Thus, in the static case the
average trajectories are periodic and evolve on closed paths.
The approximation(14) seems to be rather rough but, be-
cause it is performed in the subensemble, there are two as-
pects which contribute to improving its accuracy. One is due
to the smaller amplitude of the velocity fluctuations in S, the
source of the trajectory fluctuations: it is zero in the starting
point of the trajectories and reaches the value corresponding
to the whole set of realizations only asymptotically. The sec-
ond is related to the fact that the trajectories in the suben-
semble are superdetermined. In addition to the necessary and
sufficient initial conditionxs0d=0, they have supplementary
initial conditions determined by the definition(9) of the sub-
ensembles. This reduces the differences between the trajec-
tories in S and thus their fluctuations. The first description of
the trapping process in qualitative agreement with the nu-
merical simulations was obtained using these approxima-
tions. However, there are important qualitative aspects that
are not obtained from this approximation. The most evident
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concerns the average trajectory in the subensemble. In the
static case the trajectory in each realization[solution of Eq.
(1)] is periodic but the average of such trajectories cannot be
periodic[as obtained from Eq.(15)] since they have different
periods (distributed around some average value which de-
pends on S). Another aspect is discussed in[20,21] and con-
cerns the average Lagrangian velocity in a biased stochastic
potential.

Trajectory fluctuations in the subensembles S are consid-
ered here in agreement with the condition(10) by separating
the realizations in S into subensembles S2 corresponding to
fixed values of the second derivatives of the potential inx
=0, t=0:

sS2d: fi js0,0d ; U ]2fsx,td
] xi ] xj

U
x=0,t=0

= fi j
0 s16d

wherei j =11, 12, 22. The Langevin equation(1) is studied in
these subensembles S2. The average trajectory is approxi-
mately determined by neglecting trajectory fluctuations in
S2. Pushed to the subensembles S2, this approximation is
much more accurate than taken in S because the trajectories
in S2 are much more superdetermined than those in S: three
supplementary initial conditions(16) are added to the initial
conditions(9). Moreover, the amplitude of the velocity fluc-
tuations is smaller in S2 than in S. Thus the accuracy of this
method is much increased compared to the accuracy of the
decorrelation trajectory method. But the main advantage of
performing this development consists in the fact that it pro-
vides for each subensemble S a collection of trajectories in-
stead of one decorrelation trajectory. It is thus possible to
obtain the statistical properties of the trajectories in S by
performing averages over the subensembles S2 contained in
S. We determine using this nested subensemble procedure
the PDF of the trajectories and also the PDF of the distance
between two neighboring trajectories. Thus much more sta-
tistical information is provided by this method, which per-
mitted us to evidence the existence of coherence in the sto-
chastic trajectories.

We note that this nested subensemble approach can be
further developed by introducing subensembles defined by
higher order derivatives of the potential, S3, S4, and so on.
This systematic expansion satisfies at each order higher than
1 all the conditions required by the invariance of the La-
grangian potential Eq.(10). It is, however, expected that the
main statistical properties of the stochastic trajectories in S
are already obtained at the second order and that the higher
orders contribute with corrections to these results. The nested
subensembles S, S2 are considered in this study.

The calculations consist of the following steps. First, the
statistical properties of the stochastic potential and velocity,
reduced in the subensemble S2 defined by conditions(16)
and(9) are derived; namely, the probability that a realization
belongs to a subensemble S2 and the subensemble average
Eulerian velocity are determined. Then an equation for the
average trajectory in S2 is obtained. The statistical properties
of the trajectories and of the distance between two trajecto-
ries in the upper subensemble S are expressed as functions of
the average trajectories in all subensembles S2 contained in
S. Finally, the running diffusion coefficient corresponding to

the whole statistical ensemble is determined. The calcula-
tions are for the static stochastic potential corresponding to
the strongest trapping. The transport in a time-dependent po-
tential is discussed in Sec. VI B.

A. Eulerian statistics in the subensemble S2

The (one-point) probability that a realization of the sto-
chastic potential belongs to the subensemble S2 contained in
the subensemble S is defined by

P1sS2d =
kdff0 − fs0dgdfv0 − vs0dgp dffi j

0 − fi js0dgl

P1sSd
s17d

where the productp is for i j =11, 12, 22. It is calculated
using the Fourier representation of thed functions and per-
forming the average of the resulting exponential of the sto-
chastic Gaussian quantities(see, e.g.,[27]). One obtains after
straightforward calculations

P1sS2d =
1

s2pd3/2fE12;12s0dcg−1/2

3expF−
sf12

0 d2

2E12;12s0d
−

a1
2c2

2c
−

a2
2c1

2c
+

a1a2c12

c
G
s18d

whereci are constants given by

c1 ; E11;11s0d − E11;
2 s0d/Es0d,

c2 ; E22;22s0d − E22;
2 s0d/Es0d,

c12 ; E11;22s0d − E11;s0dE22;s0d/Es0d,

c = c1c2 − c12
2 , s19d

andai are essentially the parametersfii
0 of the subensemble

S2,

a1 ; f11
0 − f0E11;s0d/Es0d,

a2 ; f22
0 − f0E22;s0d/Es0d. s20d

The average Eulerian potential in the subensemble S2,
FEsx ;S2d;kfsxdlS2, is determined by the conditional aver-
age corresponding to Eq.(16):

FEsx;S2d

=
kfsxddff0 − fs0dgdfv0 − vs0dgp dffi j

0 − fi js0dgl

P1sSdP1sS2d
.

s21d
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This average is calculated by introducing the Fourier repre-
sentation of thed functions which leads to the average of
fsxd multiplied with an exponential of a linear combination
of fs0d, vs0d andfi js0d. It can be written as the derivative at

a parameterb taken atb=0 of the average of the exponential
of the above linear combination with an additional term
bfsxd. One obtains after performing the inverse Fourier
transforms

FEsx;S2d = −
fEsxd ] /] f0 + Ei;sxd ] /] fi

0 + Eij ;sxd ] /] fi j
0gP1sSdP1sS2d

P1sSdP1sS2d
, s22d

which can be written explicitly as

FEsx;S2d =
Esxd
Es0dFf0 +

a1fE22;s0dc12 − E11;s0dc2g
c

+
a2fE11;s0dc12 − E22;s0dc1g

c
G +

E2;sxd
E2;2s0d

v1
0

−
E1;sxd
E1;1s0d

v2
0 +

E12;sxd
E12;12s0d

f12
0

+
E11;sxdsa1c2 − a2c12d

c
+

E22;sxdsa2c1 − a1c12d
c

.

s23d

The subensemble S2 average potential(23) equalsf0 at x
=0, t=0 and it decays to zero at largex, like the average
Eulerian potential in the upper subensemble S. Its expression
is more complicated and depends on the second order deriva-
tives fi j

0 that label S2. The potential considered only in the
realizations in the subensemble S2 is a nonstationary and
nonhomogeneous Gaussian field having a space-time-
dependent average.

As in the whole ensemble and as in S, the statistical prop-
erties of the velocity field in the subensemble S2 are deduced
from those of the potential in S2. The velocity in the suben-
semble S2 is a nonstationary and nonhomogeneous Gaussian
stochastic field having a space-time-dependent average. This
average Eulerian velocity is calculated by the same proce-
dure used for the potential(23). The relation(2) between
velocity and potential in each realization holds between the
respective average quantities calculated in the nested suben-
sembles. It was obtained in the subensemble S in[18], and it
can be shown that

Vi
Esx;S2d = ei j

] FEsx;S2d
] xj

. s24d

Thus the average velocity in the subensemble S2 is
divergence-free:= ·VEsx ;S2d=0.

It is interesting to note that the potential and the velocity
in the subensembles S and S2 are deterministic quantities in
x=0 [fs0d=f0, vs0d=v0 for all realizations in S, and thus
also in S2]. As uxu grows, the average values decay to zero
and the fluctuations build up progressively and eventually

become the same as in the global statistical ensemble. The
amplitude of the fluctuations at a pointx is smaller in the
subensemble S2 than in the subensemble S.

This nested subensemble procedure evidences, in the
zero-average stochastic velocity field, aset of average ve-
locities (corresponding to each subensemble). They depend
on the statistical characteristics of the velocity field(the cor-
relation and the constraint imposed in the problem, i.e., the
zero-divergence condition). The following relation holds be-
tween the S2 average velocities and the S average velocity:

VEsx;Sd =E df11
0 df12

0 df22
0 P1sS2dVEsx;S2d. s25d

Similar equations can be written for all statistical quantities
defined in the nested subensembles.

B. Average trajectory in the subensemble S2

The average Eulerian velocity(24) determines an average
displacement in the subensemble S2,Xst ;S2d. It is the time
integral of the average Lagrangian velocity in S2,VLst ;S2d.
The latter is evaluated by neglecting the fluctuations of the
trajectories in the subensemble S2 as

VLst;S2d > VEfXst;S2d;S2g. s26d

With this approximation the average Lagrangian potential in
S2 is kwfxstdglS2>FEfXst ;S2d ;S2g. Due to Eq. (24) a
Hamiltonian equation is obtained forXst ;S2d:

dXist;S2d
dt

= «i j
]

] Xj
FEfXst;S2d;S2g. s27d

The potential calculated along the solution of Eq.(27) with
the initial conditionXs0;S2d=0 is invariant and independent
of the parameters of S2:

FEfXst;S2d;S2g = f0 s28d

at any time and for all subensembles S2 included in S.

C. Lagrangian statistics in the subensemble S

The nested subensemble method provides for a suben-
semble S an ensemble of trajectories, the average trajectories
Xst ;S2d, one for each subensemble S2 contained in S. A
weighting factor P1sS2d is attributed to each trajectory
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Xst ;S2d. The Lagrangian statistics in the subensemble S is
obtained by performing weighted averages over these trajec-
tories. So the average Lagrangian velocity in S,VLst ;Sd, is
determined by averagingVLst ;S2d obtained from Eqs.(26)
and (27) over all subensembles S2 contained in S,

VLst;Sd =E df11
0 df12

0 df22
0 P1sS2dVEfXst;S2d;S2g.

s29d

The average trajectory in the subensemble S,Xst ;Sd
;kxstdlS, is determined by averagingXst ;S2d, the solution
of Eq. (27):

Xst;Sd =E df11
0 df12

0 df22
0 P1sS2dXst;S2d. s30d

The dispersion of the trajectories in S,dist ;Sd;ksxistd
−Xst ;Sdd2lS, is

dist;Sd =E df11
0 df12

0 df22
0 P1sS2dXi

2st;S2d − Xi
2st;Sd.

s31d

The PDF for the trajectories in S is determined by integrating
the PDF in the subensemble S2, which in this approximation
is dfx−Xst ;S2dg,

PSsx,td =E df11
0 df12

0 df22
0 P1sS2ddfx − Xst;S2dg. s32d

We note that Eqs.(30)–(32) are exact.
The PDF for the Lagrangian potentialffxstdg in the sub-

ensemble S obtained by this method equalsdsf−f0d since
the potential is equal tof0 on all trajectories considered in
the average. This shows that the approximation(26) intro-
duced in this method ensures entirely the statistical proper-
ties of the Lagrangian potential.

The statistical properties of the distance between two tra-
jectories in a subensemble S,dstd;x8std−xstd with x8s0d
=d0 and xs0d=0, can also be determined using the average
over the subensembles S2. The average trajectory in S2,
X8s0;S2d;kx8stdlS2, is the solution of Eq.(27) with the ini-
tial conditionX8s0;S2d=d0. The average, the dispersion, and
the PDF ofdstd in a subensemble S are determined by equa-
tions similar to Eq.(30)–(32) whereXst ;S2d is replaced by
X8st ;S2d−Xst ;S2d.

D. Running diffusion coefficient

The correlation of the Lagrangian velocity in the whole
set of realizations is determined using Eqs.(12) and (29).
The running diffusion coefficient(7) is obtained by integrat-
ing the LVC (12) as

Distd =E E df0dv0P1sSdvi
0Xist;Sd. s33d

In the case of an isotropic stochastic field, the integral over
the orientation of the velocityv0 can be performed analyti-
cally [18] and one obtains for the static case

Dstd =
1

Î2p

1
ÎEs0,0dE1;1s0,0d

E
0

`

df0E
0

`

du u2

3expS−
sf0d2

2Es0,0d
−

u2

2E1;1s0,0dDX1st;Sd s34d

and

Lstd = D8std, s35d

where X1st ;Sd is the component of the average trajectory
alongv0, determined from Eq.(30), andD8std is the deriva-
tive of the functionDstd. We note that the same analytical
expression forDstd in terms of the average trajectoryX1st ;Sd
is obtained in[18] by means of the decorrelation trajectory
method. The difference is that the average trajectory was
determined there as a solution of a Hamiltonian equation
while here it is the average(30) of the average trajectories in
S2.

IV. DISCUSSION AND EXPLICIT CALCULATIONS

The nested subensemble method actually is based on the
classification of stochastic trajectories in groups(suben-
sembles) according to some resemblance between them. The
most important criterion in this classification is the value of
the potential at the starting point of the trajectories. All tra-
jectories contained in such a group evolve on contour lines
with the same value of the potential. Consequently, their
paths and periods are statistically similar in the sense that
they have an average size and period. Thus this condition
determines a global resemblance of the trajectories(extended
at long time). This condition is imposed beginning with the
first level of classification(in the subensembles S). Other
criteria of the classification are the velocity and the deriva-
tives of the velocity in the origin. These are not conserved
quantities and thus they influence the shape of the trajectory
only at small time for time intervals that grow with the num-
ber of imposed conditions. The value of the initial velocity is
fixed in the subensemble S; then each subensemble S is di-
vided in smaller subensembles S2 according to the value of
the derivatives of the velocity(second derivatives of the po-
tential). This classification can continue in principle and at
each step the resemblance of the trajectories contained in a
group is increased and the number of groups grows. The
approximation consists in neglecting the differences between
the trajectories in a group. With this condition it is possible
to determine an average trajectory for each subensemble.
Thus the nested subensemble method determines a set of
trajectories[Xst ;S2d for the second order considered here]
and a weighting factor for each one. Then, the statistical
properties of the stochastic trajectory are obtained by per-
forming weighted averages over these trajectories. Except for
some special case, the trajectoriesXst ;S2d have to be nu-
merically calculated by solving the Hamiltonian system(27).
This procedure appears to be very similar to a direct numeri-
cal study of the simulated trajectories. There are, however,
essential differences. The average trajectories are obtained
from a rather smooth and simple time-independent Hamil-
tonian. They are periodic functions and thus are calculated
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only for a period. The number of trajectories is much smaller
than in the numerical study due to the weighting factor de-
termined analytically. This very much reduces the calculation
time, such that it can be performed on a PC. Moreover, such
a calculation performed for a static stochastic potential with
a given EC determines the solution for the time-dependent
potential with arbitrary time factor in the EC(see Sec. VI B).

The nested subensemble method determines the statistics
of the trajectories in subensembles S and the LVC for tracers
advected in a Gaussian stochastic potential with given EC.
The main condition for using this method is that the transport
is stationary, which usually corresponds to stationary and
homogeneous stochastic potentials. The time-dependent dif-
fusion coefficient(34) is obtained for an isotropic potential
but this is not a restriction for this method. The above calcu-
lations are for a static potential but they can be extended to
the time-dependent case(see Sec. VI B).

We have developed an algorithm for calculating the sta-
tistical characteristics of the trajectories in subensembles S
and the running diffusion coefficient(34) for given EC of the
potential. The solutions of Eqs.(27) are calculated for a pe-
riod using a variable integration step monitored by the pre-
cision obtained for the potential. Precisions of the order of
10−3–10−4 ensures the stability of the calculatedDstd. The
order of performing the integrals in Eq.(34) appears to be
important. The integral overu is first calculated. This param-
eter is factorized in the expression of the average Eulerian
potential in S2[Eq. (23)] and is introduced in the time vari-
able t=ut Thus, only the trajectories withu=1 need to be
calculated. The values of the functionX1sut;S2d are deter-
mined from the trajectory obtained from Eq.(27) with u=1
by interpolation and using the periodicity. The integration
stepdu is determined at each time such that a large enough
number of points(30–50) exists on each period. When there
are more than about 50 periods on the range ofu the inte-
gration is not performed because its value is negligible. The
next integrations are overf12

0 , f11
0 , andf22

0 . They are calcu-
lated on constant step meshes with 31–61 points. Last is
performed the integral overf0. Due to trajectory trapping,
the range of this integral is continuously reduced as time
increases(fmax

0 →0 whent→`). The range of this integral is
determined as a function of time. The calculations start with
a large value offmax

0 , as obtained from the exponential fac-
tor. At the time when the integrand becomes approximately
zero on half of this rangefmax

0 is reduced and the integration
of the trajectories is taken again fromt=0 for the new values
of f0. The mesh forf0 has variable steps that increase to-
ward large values off0 because the function has strong
variations at smallf0. The tests performed with this code
have shown that the numerical calculations are rather fast
and accurate and they can be advanced up to large values of
time. For instance, using the decorrelation trajectory method
the duration of the calculation ofDstd up to time of the order
102 is of the order of a few seconds on the usual PC. Using
the nested subensemble method the calculation time is of the
order of 10 h because the number of calculated trajectories
increases by a factor of 104.

V. TRAJECTORY STRUCTURES

We present in this section typical results obtained for one-
and two-particle statistics in a subensemble S. We need to

specify the EC function of the stochastic potential(3), which
we choose as

Esxd =
1

1 + sx1
2 + x2

2d/2
. s36d

This is the EC function of a normalized stochastic potential
with amplitudeEs0d=1, lc=1, andt f l =1. Thus in Figs. 1–7
the time unit ist f l and the length unit islc. The velocityv0

that defines the subensembles S is taken along thex1 axis.
The average trajectory in the subensembles S2, the solu-

tion of Eq.(27), is a periodic function of time and evolves on
a closed path for most of the subensembles S2. As seen in
Fig. 1, there is a clear difference between the trajectories
corresponding to smalluf0u [Fig. 1(a) for f0=0] and large
uf0u [Fig. 1(b) for f0=1]. In the first case there are open
trajectories, large displacements, and large periods for the
closed paths. In the second case the trajectories have small
size and their periods are much smaller. This is due to the
fact that at smalluf0u the trajectories are close to the separa-
trix of the Hamiltonian(23) while at largeuf0u they are close

FIG. 1. Examples of paths of the average trajectories in suben-
sembles S2 obtained from Eq.(27) for several values offi j

0 and for
f0=0, u=2 (a) andf0=1, u=2 (b).
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to its elliptic points. The size of the path and the period of the
trajectory depend on the six parameters that define the nested
subensembles S, and S2.

The average trajectory in the upper subensemble S is ob-
tained from Eq.(30). Typical average trajectories in S are
presented in Figs. 2 and 3. These trajectories are not peri-
odic. They evolve on spiral shaped paths, except for the sub-
ensemble withf0=0 which yields a continuous displacement
along v0 (Fig. 2). The size of the paths depends on the pa-
rameters of S,f0 andu;uv0u: it is large for smalluf0u and
largeu and it decreases asuf0u increases. The displacement
along the initial velocityv0 decays to zero in a characteristic
time ts while the displacement perpendicular tov0 saturates
at a finite value whose sign is the same as the sign off0 [Fig.
3(b)]. The saturation timets depends on the parameters of
the subensemble S. It increases whenuf0u decreases(as the
size of the paths) and whenf0→0 it becomes infinite. Thus
the average trajectories in S obtained here are completely
different from those obtained by means of the decorrelation
trajectory method[18]. The latter are periodic functions of
time and their paths are closed(see Fig. 2 for comparison).
This means that the fluctuations of the trajectories have a
strong influence on the average trajectory in S. They deter-
mine the time saturation of the average trajectory in S by the
mixing of the closed periodic trajectories.

The dispersion of the trajectories in the subensemble S
obtained from Eq.(31) is presented in Fig. 3 as a function of
time for f0=0 [Fig. 3(a)] andf0=1 [Fig. 3(b)]. One can see
that in the first case the dispersion continuously increases
[Fig. 3(a)] while in the second case it saturates after a more
complicated evolution[Fig. 3(b)]. The saturation time is the
same as for the average trajectory. The amplitude of the tra-
jectory fluctuations is comparable with the average displace-
ment. The small time evolution of the dispersion is very
slow, approximately ast4, and thus much slower than the
usual ballistic regimedi , t2. This is due to the fluctuations of
the Eulerian velocity in S which are small nearx=0.

The trajectories in the subensemble S are Gaussian at
small timet!t f l but their distribution is strongly modified as
time increases. The PDF obtained from Eq.(32) is repre-
sented in Fig. 4. Important differences can be observed be-
tween the subensembles withf0>0 [Fig. 4(a)] and those
with large uf0u [Fig. 4(b)]. In the first case the PDF is sym-
metric aroundv0; it develops a narrow maximum atx=0 and
an annulus that expands continuously in the direction ofv0 as
time increases[Fig. 4(a)]. The velocity of this part of the
trajectories is larger than the average velocity. The path of
the average displacement is also represented in Fig. 4(a) (red
line). The end point of this curve is the average position at
the moment corresponding to the representation of the PDF
st=100t f ld. It is located between the two maxima of the PDF
in a region where the latter is practically zero. The PDF for
subensembles with largeuf0u is completely different. It satu-
rates in a timets at a function that has a narrow maximum in
x=0 and extends only on a small region(with x2.0 for
f0.0) [see Fig. 4(b)].

Typical results obtained for the second moment of the
relative displacementdstd;x8std−xstd, Distd;kdi

2stdlS, are

FIG. 2. Examples of paths of the average trajectories in suben-
sembles S obtained from Eq.(30) (continuous lines). The results
obtained with the decorrelation trajectory method are also plotted
for comparison(dashed lines).

FIG. 3. Time evolution of the average trajectory and of the
dispersion[Eq. (31)] in two subensembles S: one withf0=0, u
=1 (a) and the other withf0=1, u=1 (b).
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FIG. 4. (Color) Contour plot of the PDF[Eq. (32)] of the trajectories at timet in two subensembles S: one withf0=0, u=1 for t
=100t f l (a) and the other withf0=1, u=1 for t=30t f l (at saturation) (b). The path of the average trajectory is also represented(red line) on
the intervalf0,tg.
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presented in Fig. 5(continuous lines) compared with the sec-
ond moments of the trajectoriesMistd;kxi

2stdlS (dashed
lines). In the subensembles with largeuf0u [Fig. 5(b)], the
evolution ofDistd shows that it maintains for a long time the
initial value d0

2 and that it reaches values comparable with
Mistd only after a very long time(of the order of 100t fl). The
relative motion is governed by the Richardson lawDistd
, t3 only for t,ts. After the saturation ofMi at ts, the dis-
tance between trajectories increases slowly, approximately as
Distd, t1.5, up to the moment when it saturates at a value
comparable with that ofMi. Thus the relative motion is
strongly hindered by trapping, which shows a very strong
degree of coherence of the stochastic trajectories. The clump
effect is thus very strong for the trapped trajectories. On the
contrary, the clump effect is very weak(practically absent)
for the trajectories which are in the subensembles withf0

>0. As seen in Fig. 5(a), Distd have values comparable to
those ofMistd from the first stage of the evolution, at time
much smallert fl. Thus, the trapping has a strong influence on

the statistical characteristics of the relative motion. It pro-
duces an anomalous clump effect. In the absence of trapping
the small time evolution ofDistd is exponential for a very
small initial separationd0 and is given by the Richardson law
for largerd0 [5,6]. The process of trajectory trapping strongly
enhances the clump effect, determining a much weaker in-
crease ofDistd and a very long clump lifetime, much larger
thant fl and than the saturation timets [Fig. 5(b)].

The PDF ofdstd in a subensemble S shows that the rela-
tive motion is not Gaussian. In the case of largeuf0u, the
PDF remains very localized around zero and saturates[Fig.
6(b)]. In the case of free trajectoriessf0>0d, the PDF has a
more complicated shape and extends continuously. At large
times it is similar to the PDF of the trajectories[Fig. 6(a)].

Thus the statistical characteristics of the trapped trajecto-
ries (corresponding to subensembles S with a large values of
uf0u) are completely different from those of free rajectories
(obtained in subensembles withf0>0 ). The average, the
dispersion, and the PDF of trapped trajectories and of the
distance between them saturate. This shows that there is a
quasicoherent motion in such subensembles consisting in tra-
jectory rotation on closed paths, with localized PDFs and
small saturated dispersion. The trajectories form structures
similar to fluid vortices. These structures or eddying regions
are permanent in static stochastic potentials. The saturation
time ts represents the average time necessary for the forma-
tion of the structure. The average size of the structure is
represented by the asymptotic average displacementuXst ;Sdu
at t@ts. The dispersion of the trajectories in the structure is
given by the asymptotic value ofdist ;Sd. We have found that
these characteristic parameters of the trajectory structures de-
pend on the parameters of the subensemble S. The size, the
dispersion, and the buildup time of the structures increase
when uf0u decreases and go to infinity atf0=0. The time
evolution of the relative square displacementDstd is very
slow, showing that neighboring particles have a coherent mo-
tion for a long time, much longer thants.

For free trajectories(that move along contour lines of the
potential withf0>0), the average and the dispersion con-
tinuously increase and the PDF continuously spreads. The
clump effect is absent and the relative motion becomes rap-
idly incoherent, after a time interval smaller thant fl. Only
these trajectories that are not contained in the structures con-
tribute to the transport.

VI. TRANSPORT

A. Static stochastic potential

The Lagrangian velocity correlation and the time-
dependent diffusion coefficient for the whole ensemble of
trajectories are determined from Eqs.(35) and (34). The in-
tegral over the parameters of the subensembles S of the av-
erage displacement in S has to be calculated. SinceX1st ;Sd
decays to zero in a timetssSd, the trajectory structures have
only a transient contribution to the running diffusion coeffi-
cient. At times larger thantssSd the contribution of the sub-
ensemble S vanishes. As time increases the diffusion coeffi-
cient Dstd is determined by a smaller and smaller number of

FIG. 5. The second moments of the relative displacementDistd
(continuous lines) compared toMistd;kxi

2stdlS (dashed lines) in
two subensembles S: one withf0=0, u=1 (a) and the other with
f0=1, u=1 (b).
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FIG. 6. (Color) Contour plot of the PDF of the distancedstd in two subensembles S: one withf0=0, u=1, t=100t f l (a) and the other with
f0=1, u=1, t=7000t f l (at saturation) (b).

TRAJECTORY STRUCTURES AND TRANSPORT PHYSICAL REVIEW E70, 056304(2004)

056304-11



trajectories, those contained in large structures with large
saturation time. The results obtained forDstd are presented in
Fig. 7 where the dimensionless functionFstd;Dstd /DB is
plotted (continuous line). The transport is subdiffusive in
such a static stochastic potential. One can observe the change
that appears att*t f l. The running diffusion coefficient be-
gins to decrease and eventually goes to zero. A power law
decay was obtained att.t f l asDstd,st /t f ld−0.42. The LVC
becomes negative att.t f l and after a minimum it has a long
negative algebraic tail that decays to zero. This shows
memory persistence in the stochastic process. The positive
and the negative parts ofLstd have equal time integrals such
thate0

t Lstddt=Dstd→0. The shape of the LVC was analyzed
in [19], where it was shown that this stochastic process is
unstable in the sense that any weak perturbation determines a
strong modification of the transport and anomalous diffusion
regimes with diffusion coefficients which increase with the
increase of the perturbation strength. The mean square dis-
placement iskx2stdl, t0.58 and thus the process is subdiffu-
sive.

The result obtained forDstd with the decorrelation trajec-
tory method is also plotted in Fig. 7(dashed line). It is sur-
prisingly close to the result of the nested subensemble
method although the two methods yield completely different
average trajectories in the subensembles S(Fig. 2). This
shows that by introducing the subensembles S2 in the nested
subensemble method a strong qualitative improvement of the
statistical results in the next upper subensemble S is obtained
and only a small correction at the level of the whole set of
realizations. It is thus expected that the development of the
method by introducing higher order derivatives and the cor-
responding nested subensembles S3, S4, etc., would yield
only small corrections for the physically interesting results
that concern the diffusion coefficientDstd and the statistical
properties of the trajectory structures. This nested suben-
semble method appears to be quickly convergent. This is a
consequence of the fact that the mixing of periodic trajecto-

ries, which characterizes this nonlinear stochastic process, is
directly described at each order of our approach. The results
obtained in first order(the decorrelation trajectory method)
for Dstd are thus validated by the present second order cal-
culations.

B. Time-dependent stochastic potential

For a time-dependent potentialfsx ,td (finite tc andK), it
is also possible to apply the nested subensemble method fol-
lowing the same procedure as above. A very simple analyti-
cal solution is obtained when the stochastic potential has
independent time and space variations such that its EC func-
tion isEsxdhstd. In this case, the average Eulerian potential in
the subensemble S is given by Eq.(23) multiplied with the
factorhstd. This factor is transmitted to the average Eulerian
velocity in S (24) and it appears in Eq.(27) for the average
trajectory in S2. A change of variable fromt to

ustd =E
0

t

hstddt s37d

can be performed in Eq.(27) and thus the average trajectory
in S2 for a time-dependent potential can be written in terms
of the average trajectory for the static case asX(ustd ; S2).
The argumentustd determined by the time dependence of the
potential is ustd> t at small t and saturates at a constant
which is the decorrelation time,ustd→tc. The same expres-
sion (34) is eventually obtained for the time-dependent dif-
fusion coefficient but withX1st ; Sd replaced byX1(ustd ; S).
Thus the diffusion coefficient in the time-dependent case is

Dtdstd = Dfustdg, s38d

whereD is the diffusion coefficient for the static potential
with the same space correlation, given by Eq.(34). The limit
for t→` is finite which shows that the transport is diffusive
in a time-dependent stochastic potential and the asymptotic
diffusion coefficient is

Dtd = Dstcd = DBFstcd. s39d

This equation shows that the asymptotic diffusion coefficient
is determined by the time-dependent diffusion coefficient
Dstd corresponding to the static potential[Fstd is the function
plotted in Fig. 7 and represents the normalized diffusion co-
efficient in the static potential andDB=slc

2/tcdK=Vlc is the
Bohm diffusion coefficient obtained when trajectory trapping
is neglected].

We note that Eqs.(38) and(39) are valid for all values of
the Kubo numberK. In the limit of smallK, the quasilinear
result is recovered from Eq.(39) and, at largeK, Dtd is re-
duced compared to the Bohm diffusion coefficient by a fac-
tor FsKd,1 which accounts for trajectory trapping. For the
above EC function of the potential, Eq.(39) gives the largeK
scaling lawDtd<slc

2/tcdKg with g=0.58. The exponentg
depends on the EC function of the potential, namely, on its
space dependence at large distances. It is not a fixed value as
in the estimation based on percolation theory[17]. A study of
the effect of the EC function of the potential on the scaling of
the diffusion coefficient is presented in[28].

FIG. 7. The time-dependent diffusion coefficientDstd obtained
from Eq. (34) with the nested subensemble method(continuous
line) compared with the result of the decorrelation trajectory
method(dashed line).
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Thus, the results obtained for the static case permit us to
determine the asymptotic diffusion coefficient in a time-
dependent stochastic potential. This property appears in the
results of the nested subensemble method(and in the decor-
relation trajectory method) but it is possible to demonstrate
in general that the time dependence of the diffusion coeffi-
cient in the subdiffusive static case determines the Kubo
number dependence of the asymptotic diffusion coefficient in
a time-dependent potential. The subdiffusive transport corre-
sponds to Lagrangian correlationsLstd which have the prop-
erty:

Dstd =E
0

t

Lstddt→
t→`

0. s40d

We suppose thatDstd decays to zero asDstd,st /t fld−a and
consequently the LVC behaves asLstd<−aV2st /t fld−a−1. In
the time-dependent case, the variation of the stochastic field
produces the decorrelation of the Lagrangian velocity and
consequently the LVC is cut down att'tc. The asymptotic
diffusion coefficient can be evaluated as the integral from 0
to tc of the LVC and using Eq.(40) one can write

D . −E
tc

`

Lstddt = DBK−a =
lc

2

tc
K1−a, s41d

which givesg=1−a. Thus the exponenta of the time decay
of the subdiffusive transport coefficient in the static case de-
termines the exponent of theK dependence of the asymptotic
diffusion coefficient in the time-dependent case. This means
that Eq.(39) holds even if the evolution ofDtdstd is not given
by Eq. (38) as happens, for example, when the EC function
of the potential is not factorized.

The time variation of the potential determines a decorre-
lation effect. After a time of the ordertc the configuration of
the stochastic potential changes. A competition appears be-
tween the intrinsic tendency of the trajectories to form struc-
tures and the destruction of these structures produced by the
time variation of the potential field. Structures withtssSd
*tc cannot exist and the corresponding trajectories produce
a diffusive transport. Small structures that build up rapidly
(with tssSd!tc) still exist if the correlation time of the field
is longer than the flight time[tc.t fl, K.1]. These vortical
structures do not contribute to the large time values of the
diffusion coefficient and the transport is reduced.

VII. CONCLUSIONS

We have studied the special problem of test particle trans-
port (tracer advection) in two-dimensional divergence-free
stochastic velocity fields, which is characterized by the in-
trinsic trapping of the trajectories on the contour lines of the

stochastic potential. We have shown that the statistical be-
havior of the trapped trajectories is completely different from
that of the free trajectories. The trapped trajectories have a
quasicoherent behavior. The average, dispersion, and prob-
ability distribution function for these trajectories and for the
distance between two trajectories saturate. A very strong
anomalous clump effect characterizes neighboring trapped
trajectories, which have clump lifetimes much longer than
the time of flight. This shows that these trajectories form
structures similar to fluid vortices. The statistical parameters
of these structures(size, buildup time, dispersion) are deter-
mined. The trajectories contained in such structures do not
contribute to the large time diffusion coefficient. The latter is
determined by the free trajectories which have a continu-
ously growing average displacement and dispersion. The
probability distribution functions for both types of trajecto-
ries are non-Gaussian. Both types of trajectories are far from
Gaussian and Markovian processes.

The Lagrangian velocity correlation and the time-
dependent diffusion coefficient are determined as functionals
of the Eulerian correlation of the stochastic potential. Long
time algebraic tails are obtained for these functions, which
determine a subdiffusive transport in a static potential and
asymptotic diffusion coefficients with weak dependence on
the Kubo number(D,Kg with g,1) for time-depending
stochastic potentials.

We have developed a semianalytical statistical approach,
the nested subensemble method, which is in agreement with
all the statistical constraints imposed by the invariance of the
potential in each realization. Essentially, this method reduces
the problem of determining the statistical behavior of the
stochastic trajectories to the calculation of weighted averages
of some smooth, deterministic trajectories determined from
the EC function of the stochastic potential. The one- and
two-point Lagrangian statistics are determined here, but this
approach can be extended to multipoint Lagrangian statistics,
which were shown recently to be very relevant for the study
of passive field advection[6–9].

The general conclusion of this work is that the existence
of a Lagrangian invariant in the evolution equation(in each
realization) determines long time correlations(memory ef-
fects) and coherence(trajectory structures) in the stochastic
motion.
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